

LAYING HEAD PIPES Improved productivity with Danieli tubes for laying head pipe

Due to long experience Danieli Service is capable to provide different solutions to achieve high performances of Laying Head Pipes

>Bend Pipe for Laying Head<

Main features

After hot rolling, wire rod coils are formed by laying the hot rolled wire on a screw conveyor where the coil is formed by the laying head pipe rotating at high speed.

Coil formation after rolling allows achieving the desired final properties of the wire through effective air cooling. The main aspects involved in wire rod production consist in increasing productivity and reducing quality problems. As the wire rod rotates at very high speed, the laying head pipe is subject to significant wear due to the friction between the pipe surface and the hot wire at very high temperatures.

Todays' wire rod mills can achieve rolling speeds varying from 50 to 150 m/s and laying heads work at approximately 900°C temperatures. At such high temperatures, these material properties play an essential role in reducing wear, cost and time, with a consequent increase in production reliability and profitability.

REDUCED WEAR AND TEAR

INCREASED RETURNS

ULTRA-SMOOTH ULTRA-STRONG SUPER RESILIENT

DANIELI THE RELIABLE AND INNOVATIVE PARTNER IN THE STEEL INDUSTRY

LAYING HEAD PIPES Improved productivity with Danieli tubes for laying head pipe

DIS50 is a super-duplex (austenitic-ferritic) stain	nless steel for service in highly (corrosive condit	tions	
 Evaluant registance to stress corregion produing 				

(SCC) in chloride-bearing environments	MPa		MPa	8 Kingation		Hardne
 Excellent resistance to pitting and crevice corrosion High resistance to general corrosion Vor bigh machanisal strength 	Rp0.2a)	Rp1.0a)	Rm	Ab)	A2"	
 > Very high mechanical strength > Physical properties that offer design advantages Uside the consistence consistence and consistence 	≥ 550	≥ 640	800 - 1000	≥ 25	≥ 15	≤ 32
> High resistance to erosion corrosion and corrosion						

Proof strength MPa

Rp0.2a)

550 - 650

Tensile strength

MPa

Rm

750 - 800

> Good weldability

fatigue

is a high-alloy duplex (austenitic-ferritic) stainless steel with excellent corrosion resistance in caustic environments and environments with chlorides

innov

Elongation

%

Ab

25

ss

Wall thickness

mm

≤ **10**

the presence of contaminants such as chlorides

> Excellent resistance to intergranular corrosion

> Excellent resistance to pitting and crevice corrosion

> High resistance to stress corrosion cracking (SCC)

> Good weldability

> Very high strength

> The proof strength is about three times as high as

for conventional austenitic stainless steels

DTS60 is a seamless and Welded Ferritic/Austenitic Stainless-Steel Pipe

innov

 Intended for general corrosive service Particular emphasis on resistance to stress corrosion cracking Susceptible to embrittlement if used for prolonged periods at elevated temperatures 	Proof strength MPa	Tensile strength MPa	Elongation %	Hardness HB	Hardness HR
	Rp0.2	Rm	Α		
	≥ 680	≥ 830	≥ 25	≤ 300	≥ 32